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Stationary mixed-polarization spatial solitons and their stability in semiconductor waveguides
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Coupled nonlinear Schdinger equations are used to describe propagation in the presence of an anisotropic
Kerr nonlinearity in the most common semiconductor waveguide configuration. Stationary soliton solutions are
identified analytically for the single-polarization case and numerically for the mixed-polarization case. The
stability of these stationary solutions is assessed by using a linear stability analysis. Analytic forms for the
bifurcation points are given, where the single-polarization state becomes unstable and the mixed-polarization
state emerges. A new form of polarization instability is also identified where the “fast” mode soliton becomes
unstable to antisymmetric perturbations at low power. Numerical studies are used to confirm the linear stability
analysis resultd.S1063-651X98)02411-§

PACS numbes): 42.65.Tg, 42.70.Nq, 42.65.Sf, 42.82.Et

I. INTRODUCTION crystal axis[001]. Since the cleavage planes 40| and
equivalent, weakly guiding waveguides have the TE polar-

There is currently a large research effort into the study ofization parallel to[110] and TM polarization parallel to
multicomponent solitons. The simplest variant of this is the[001]. In anisotropic cubic media the general propagation
interaction of two orthogonal polarization components. Theequations are quite complex, with six nonlinear terms for
system for mixed-polarization solitons studied most exteneach polarization componefit1]. However, the higher de-
sively, both experimentally and theoretically, is temporalgree of symmetry for this particular orientation results in
solitons in an optical fiber[1-4]. Semiconductor slab some simplification of the propagation equations. The con-
waveguidegin particular, ALGa ,As at~1.5 um) have ventional approach of factoring out the single-moded enve-
proved to be a useful medium for studying spatial solitongope in the vertical direction has been employed, leading to
and their dynamic§5,6]. Although in both of these systems
the nonlinearity is of Kerr type, the assumptions of isotropic g5, 424 o
nonlinearity and of Kleinmann symmetry, commonly made i—+——yu+ (l— —)uu* +
in the case of silica, do not extend to semiconductors. 9z x? 2

Studies of optical propagation in anisotropic cubic media o
initially only considered propagation parallel to a crystal axis + ( o— —) u*v?=0,
giving fourfold rotational symmetnyf7,8]. This geometry 2
with the added assumption of Kleinmann symmetry has also ey
received some attention in relation to spatial solitons using v P (1 5 U)uu* -

u

16— 2| pu*
2UU

an average profile approaf®| and a linear stability analysis 'E + ﬁ Tyt 2
[10]. The complete form of the coupled propagation equa-
tions for an anisotropic cubic nonlinear refractive index has
been developed recentf\L1]. Plane-wave polarization dy-
namics and initial finite-beam numerical studies have been
considered[12]. Qualitative agreement has been demon-yhereu andv are the scaled electric field amplitudes for the
strated with observed polarization dynamics in®& _ As  TE and TM components, respectively, such that the irradi-
v_vaveguides[&}]. With the i_nclusion of diffrgction, the equa- ance isl,=2n,|ul?/n5[001] and n5[001] is the nonlinear
tions of motion are nonintegrable and in general mixed-gfractive index for light linearly polarized parallel to a crys-
polarization solutions can only be obtained numerically. Ing, axis(e.g., TM modg All quantities in Eqs(1) have been
the present paper the stationary soliton solutions are studieg.yjeq to be dimensionless; the transverse and longitudinal
for the standard geometry of semiconductor waveguides. 1@yordinates have been scaled to the optical wavelength,
particular, the mixed-polarization stationary solutions are ob» .+ and %z—z. The parametery= (k1y— krg)/dk is
tained numerically; linear stability analysis is performed anaproportional to the(structurally inducedbirefringence. The
lytically on single-polarization solitons and numerically in polarization dependence is introduced through the dimen-
the general case. sionless parameters: is the nonlinear refractive anisotropy
Il. COUPLED NONLINEAR SCHRO DINGER EQUATIONS ~ Parameter ands the nonlinear birefringence parameter
[13,14. For an isotropic medium with Kleinmann symmetry
The usual orientation for a semiconductor waveguide on &hese material parameters take the valtes0 and 5= 1/3,
GaAs substrate is that the growth direction is parallel to éut in Aly 13Gay gAs at the half-band-gap measurements in-

v

+

g
5—§)u2 *=0Q,
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dicatec= —0.54 and5=0.18[15]. This large degree of an- 1
isotropy for nonlinear refraction is also predicted from band-
structure calculationgL3]. Note that the anisotropy leads to
an asymmetry in the self-phase-modulation terms for the twa
polarization components for this orientation and hence is 05
substantially different from that studied in Reff9,10]
(which also have one fewer material parameter, as Klein-
mann symmetry is assumed S o
Ill. REVIEW OF PLANE-WAVE POLARIZATION
DYNAMICS

The plane-wave polarization evolution described by Eq.
(1) neglecting thex derivatives has received some attention.
An elegant method of solution is to consider the Hamiltonian
of the problem and then the polarization evolution trajecto-
ries correspond to contours of the constant Hamiltoéso
keeping total power constgntThis can be formulated in

terms of field amplitude§l1] or in terms of the Stokes po- % - 47

larization parametergl2],

FIG. 1. Polarization evolution trajectories for a plane-wave in
Al,Ga, _,As with the usual orientation in terms of the Stokes pa-
rameters. The ratio of birefringence to nonlineadtitly/ky, is taken
to be 0.3 here, illustrating the bifurcation in the TM-only polarized
si=|ul?=1|vl?, stationary solution.

)

So=ul?+|v[?,

. * IV. SOLITON STATIONARY SOLUTIONS
S=u*v+uv*,

Among the stationary solutions to E@l) are single-
polarization solitons. This can be seen by substituting0
(or alternativelyv =0) in Eq. (1) to obtain the usual scalar
Honlinear Schrdinger equationNLSE) in the TM (or TE)
polarization component only. The lowest order soliton in this
case takes the usual form,

Sz3=—i(u*v—uv®).

The Stokes parameters allow the trajectories to be illustrate
on the Poincaraphere.
In order to understand the polarization dynamics, it is

instructive to examine stationary solutions and their dynam- \/E X 1
ics. In the presence of birefringence, at low optical power v= —sec}‘( _) expli| —+7v|z|. (4
levels the plane-wave stationary solutions correspond to lin- a a’

ear polarizations paralléTM) and perpendiculafTE) to the

optic axis([001]). As the power(nonlinear phase shiftin- For the specific case of zero birefringencg<0) there
creases, there is a threshold at which there is a bifurcation gfre additional uniform polarization stationary solutions ob-
the singly polarized stationary solutions. For the “fast” tained by reducing the coupled NLSE’s to a single equation.
mode (smaller propagation constarthis is into two ellipti-  In the plane-wave case there are stationary polarization so-
cally polarized stationary solutions aligned with the opticlutions: (1) linearly polarized parallel td111], given in
axis. This bifurcation has previously been recognized fronferms of the Stokes parameterssas=sy/3 ands;=0, and
the study of temporal solitons in a birefringent optical fiber(2) elliptically polarized states aligned with the optic axis
[2,7]. In anisotropic systems, however, there is an additionasuch thats; =sy0/(85— ) ands,=0. Assuming a solution
bifurcation of the plane-wave stationary solution for theWwith a uniform polarization state corresponding to one of
“slow” mode (larger propagation constarinto two linearly ~ these plane-wave solutions again reduces(Bdo the scalar
polarized states. An example of this is demonstrated in thérm and the nonlinear coefficient is scaled appropriately.
polarization evolution trajectories on the Poincaphere in  For example, in thg111}-linear polarization case we take
Fig. 1. These plane-wave bifurcation points can be specifietd=2/3w andv = y/1/3w and the scalar NLSE has the non-
analytically[12]. Using the formalism of this paper they are linear refractive coefficient for this polarizatiorm,é[lll]

given by =(1—20/3)n5[001].
In order to proceed with the general case of a nonzero
So=2v/(26—0al2), TE, y>0 birefringence ¢+#0) we first refer back to the plane-wave
case. The two classes of mixed-mode stationary solution cor-
so=4ylo, TE, <0 respond ta1) linear polarizationat some angle to the optic

axig), which in terms of the Stokes parameters corresponds
to the “equator” on the Poincarspheres;=0, or (2) ellip-

tical polarization aligned with the optic axis corresponding to
the “meridian” of the Poincarespheres,=0. In the former
so=—7l6, TM, y<O. case the componentsandv are in phase, and in the latter

©)
So=—2y/lo, TM, >0
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FIG. 2. Plot showing the integrated Stokes parameters for the 0.025

stationary soliton solutionolid line) for the Al,Ga, ,As example
taking y=10"“. The bifurcation of the TM-only polarized solution 0.02
is demonstrated here. The long-dashed line indicates the unstabE‘
continuation of the TM-only polarized soliton stationary solution. 0.015
The short dashed lines indicate the maximum/minimum values of 0.01
S,, i.e.,S,/Sy=*1. The pointga)—(c) refer to the calculated pro-

files in Fig. 3. 0.00&
case exactly in quadrature. Therefore in the spatial soliton -150 100 -50 O &0 100 150 200
case we will consider the two classes of stationary solution: X

(1) linearly polarized, u(z,x)=U(x)exp(Q2), v(zx)
=V(x)exp(2), which reduces EqJ) to the pair of ODE’s:

0.06
d?u o
< (Ut |1-3 U2+ (1-0)V2|U =0, 005F (o) A
X - 0.04 R
d2v > 003 Py
F—(Q—7)V+[(1—0)U2+V2]V=0; 3 A |
X 0.02 )/ %\
4
(2) elliptically polarized u(z,x)=U(x)exp(Q2), v(zx) 0.01 iy "\
=iV(x)exp(2) giving the ODE’s '
2y o -7 50 25 0 25 50 75 100
F—(Q+7)U+ 1-5 u2+(1—25)v2}u=0, X
X FIG. 3. Calculated amplitude profiles for the mixed-mode lin-
42V (6) early polarized soliton stationary solutions)—(c) correspond to

- _(0— +1(1— 24 \2v=0. the points indicated in Fig. 2. The solid line is the TE-polarized
dx? (@=yV+[(1=25) U7+ VIV=0 component and dashed line is the TM-polarized component.

U(x) andV(x) are real functions in both cases, afidis a  guments dictate that)(x) andV(x) must be even or odd

parameter that will ultimately be related to power. functions; the fundamental soliton falls into the category in
The method of seeking solutiorid(x) and V(x) is as which both functions are even. Hence we look for zeros of

follows. Bound solutions have the asymptotic form at largeP0th dU/dx and dV/dx at x=0, by minimizing durdx)?

|x| found by ignoring the nonlinear terms in E@) or (6),  +(dV/dx)“ as a function of the initial parametersl ¢, Vo).

thus giving In principle, this approach could be extended to search for
even/odd or odd/odd solutions, but these higher-order solu-
U(x)~Ugexp— (VQ+ y)|x|, tions could not be located numerically and it is known that
) solutions of this form tend to be unstaljig].
V(x)~Voexp— (VO —)|x|. As an example, we shall look in more detail at the linearly

polarized mixed-mode stationary soliton given by the solu-
These asymptotic forms and their derivatives are used agon of Eq.(5) with positive y=10"%. To illustrate the locus
initial conditions for numerical integration of the full ODE’s of solutions, we make use of the integrated Stokes param-
towardsx=0, using the Runge-Kutta method. Symmetry ar-eters,
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- dey e o
Sj:J’_oon(X) dx . (8) Iﬁ_ZV+ &Xz\/—(ﬂ—'y)ev—i— 1-6— E) €y
In particular, the total optical power is proportional3g. In o o
Fig. 2 the mixed-mode stationary solution is shown plotted +| o— 5) € |Us+| | 1—6— E)(6U+ €))
as$S, againstS;. In addition, the TM-only polarized station-
ary soliton is shown as the lirf® = 0. The short-dashed lines o
indicate that all solutions must lie in the regit®,|<S,. It +2| 60— 5) eu|UoVot (2ey+€))V5=0. (9)

can be seen that the pair of mixed-mode stationary solutions
only exists at optical powers above a certain threshold. The
points indicated on the mixed-mode stationary solutions corw iting th turbati illat functi
respond to the profiles shown in Fig(@B-3(c). Note that rting the perturbationsy , ey as osciflatory functions,
both components are bell-shaped curves but of different 9"

widths, giving a polarization state that varies across the soli-

ton profile. As the total optical power varies, there is a con- | ,

siderable variation in the relative power in each mode and irfi= 2[X;(X) + Y;(X) Jexp(irz)

the width of each component. " %[Xj(x)—YJ(x)]*exp(—i)\*z) (for j=U,V),
V. LINEARIZED FORM (10

One conventional method for analyzing the stability of the
stationary solutions is to examine the dynaml_cs _of a _SmaN/vherer andY; refer to the in-phase and in-quadrature com-
perturbation from this solution[1]. Substituting N ponents of the perturbations;, collecting terms propor-

Ea. (1) u=[Ug(x)+ey(zx)]exp((22) and v=[Vo(X) tional to exp(rz) and expEir*z), and rearranging, we ob-
+ €v(z,x) |exp((22) whereU, andV, are known solutions to  {5in

Eq. (5) and ¢y and ey are the small perturbationso only
terms linear iney v need be retaingdprovides

2 L,Y=\X,
Ldey  J€y (o o2 11
IE PV —(Q+y)ey+ l—z (2ey+€;)Ug (11)
. . o Lo X=\Y,
+ 1_6_5 (EV+6V)+2 5_5 €y UOV0
o a\ Lo, where the vectob(=(§“). The operatord ; andL, are de-
+ 1—5—5 Gu+ 5—§ €y VO—O, fined by
2
——(Q+y)+ 1-Z U2+ (1-26)V?2 2l 65— Zlu,v
A2 ( Y 20 0 2/~ 0oVo
L = ’
' o d? 5
2| 6— 5 |UgVq — —(Q—y)+(1-28)Uj+Vy
2 dx?
(12
d? a\ 5
— —(Q+7y)+3|1- 5 |Ui+(1—0)V} 2(1-0)UgVo
dx? 2
L=
’ d2 2 2
2(1-0)UyVg F—(Q—’)/)+(1—O')Uo+3vo
X

SincelL; and L, are self-adjoint operators, Eqgll) indicate that\? is real, i.e., the eigenvaluk is either pure real,
corresponding to a stable perturbation, or pure imaginary, corresponding to an exponentially growing, unstable perturbation.
We note that this two-dimensional eigenvalue equation has a similar form t¢IRgalthough the initial coupled differential
equations are different.

The linear stability analysis of the elliptically polarized solitons is very similar. The same form is obtained for the
eigenvalue equation, E¢l1), but the operatork, andL, are slightly modified as
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d? o\, 5 o
&—(QHH 1-5|Ugt(1-0)Vg —2| 6= 5|UoVo
L]_: ,
2| 6- 2 Ugv C @ 1o o U242
—2{ 6= 5]UoVo &_( —y)+(1=0)Up+Vy
13
d2 ( )
912 2
@—(Qw)ﬂs 1- 5| Ug+(1-28)Vg 2(1-28)UgVo
L2:
d2
2(1-28)UyV, @—(Q—yw(l—z&)ungg

Now consider the specific case of a single-polarizatiorat \ =0. On inserting this value into EgéL5) the two polar-
soliton for which the analytic solution is available in Eg). ization components decouple. Taking the stationary solution
The off-diagonal terms in the operatdrg andL, are zero, for the TM-only component given by E¢4) and making the
and therefore Eqg11) decouple into sets of equations sepa-substitutiont=tanh(x/a) then both of Eqs(15) reduce to
rately describing each polarization component of the perturthe defining ODE for associated Legendre functipm§].
bation. As an example, we consider the stationary solutioiThe linearly independent solutions aPé(t) and Q%(t) or,

with only a TM-polarized component,=0; a similar  alternatively, providingu is not an integerP, *(t), where
analysis applies for the TE-only case. The stability eigen-

value equations for the same polarization component can be 1 1+t|#7?
written as PX(t)= —F(l—,u) T
d2 —
ﬁ—(ﬂ—ywvg Y,=\X,, XFl—vvtlil-pi—— (16)
X
(14 N . .
42 andF(a,b;c;z) is the hypergeometric function. The order
(0= y)+3V2|X, =Y and degree’ of the associated Legendre functions are given
dX2 Y 0 v v by
This form has been well studied for the scalar NLSE,17). w?=1+2a%y, v(v+1)=2(1-0) for X,, (17)
Solutions to these include the case 0, which gives mar-
ginal stability. For a bounded solutiov,, we getY,=V,, w?=1+2a%y, v(v+1)=2(1-26) for Y,. (19
which corresponds to a phase shift, ag-dV,/dx, which
corresponds to a position shift. There are two roots , in each case for the ordes, which

The stability eigenvalue equations for the opposifee-)  are related by,+ 1= —v;. The TE-only case can be simi-
polarization component in the TM-only stationary solution larly analyzed and also produces associated Legendre func-
are tions for the eigenfunctions with=0 but with the order and

degree given by

Y =X, l1-o
b= M p2=1-2a2y, v(v+1)=2% for X,. (19

o |1-3)

w?=1-2a%y, wv(v+ 1)=2w
Here we have used the linear-polarization stationary-solution ( 1— _>
form for the operators given in Egél2), but the result for 2
the polarization stability of the single-polarization soliton ) o )
follows also for the alternate form. Here we are interested in eigenfunctions that are bounded,

Note that in these opposite-polarization eigenvalue equd€auiringX(t), Y(t)—0 ast—*1. At these limits the hy-

tions (unlike the same-polarization casenumber of nonlin-  Pergeometric function takes the forrjig]
ear refractive parameters such@asnd § remain. Thus it is

d2
{ﬁ—(sn Y)+(1-26)V3

X,=\Y,.

d2
@—(Qﬁu y)+(1—0)V3
for Y,. (20

anticipated that as the soliton power changes, the eigenvalues F(abici1)= I'(c)I'(c—a—b)
of Egs. (15) will vary. We are particularly interested in the e I'(c—a)I'(c—b)’
threshold that marks the transition from a stable to an un- (21

stable perturbation. Sino€? is always real, this must occur F(a,b;c;0)=1.
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Taking the positive square ro¢te., u>0), it can be seen
from Eqgs.(16) and(21) that P/ (t) is singular at=1. There-
fore the eigenfunctions are restricted to the negative
root X(t), Y(t)=CP,#(t). Furthermore, to satisfy
lim,_ _,P, #(t)=0, the hypergeometric function must van-
ish ast— —1, corresponding to a pole of one or other
gamma function in the denominator of E@1), I'(x— v) or
I'(1+ w+v). Therefore it is necessary that ¢ v) is zero

or a negative integer for one of the possible values for the
orderv. Typical values of the material parametéesy., half-
band-gap nonlinearity in direct-gap semicondudtaaise
—2<0=<0 and 0<6<1/3. These impose restrictions on the
positive root for the degree: (1) for Egs.(17) and(19), 1
<p<2, and(2) for Egs. (18) and (20), 0<w<1. Hence,
overall only the caseg.=v and u=v—1 need be consid-
ered here. These two cases correspond to a symmetric and
antisymmetric eigenfunction, respectively.

Consider first the TM-only polarized stationary solution
with the order and degree of the eigenfunction given by Egs.
(17) and (19). If the structural birefringence parameteris
positive (indicatingnty>n+g), thenw>1 and the only sta-
bility threshold that applies ig.= v (symmetric eigenfunc-
tion) using Eq.(17). The optical power in the soliton is pro- <
portional to a~!, therefore with increasing power the /! \
parameten decreases towards unity according to ELy). () / <
The thresholdu=v here is the soliton equivalent of the ,’ A
plane-wave bifurcation poinf11,12, where the TM-only VE | ST ~——
wave becomes unstable with the stationary solution bifurcat-
ing into two linearly polarized stationary solutions. Fer
<0, Eq.(18) providesu <1, increasing with optical power.
There is also a soliton stability threshold that corresponds to
the previously investigated plane-wave bifurcation point -4 -2 0 2 4
(into elliptically polarized stationary solutiongiven by u x/a
= v (symmetrig and Eq.(18). However, taking the measured
values for A} 15Gay gAs [15], o= —0.54 and6=0.18, the

FIG. 4. The TE-polarized perturbation eigenfunctions at the

o Lo . . threshold of instability for a TM-only polarized soliton calculated
stability threshold conditiom. = »—1 (antisymmetric pertur- using the measured nonlinear refractive parameters for

batior)_ with Eq. (17) is reached at 'OWE?r optical power lev- Al 158G g/As at the half-band-gap. For comparison the sech enve-
els. Flgure__4 shows the calculated eigenfunctions at the%Spe of the TM-polarized soliton is also shovaashed Transverse
three stability thresholds. dimensions are given in terms of the soliton width(a) occurs for

Consideration of the TE-only case gives similar results,, ' ~n.. (b) is the symmetric andc) the antisymmetric eigen-
The plane-wave bifurcation into linearly polarized stationarysunctions, respectively, fony<nre.

solutions for y<0 has its counterpart in the soliton case

given byu = v and Eq.(19). For y>0 there is the equivalent value problem(set of coupled linear ODE]sintegrating in

of the plane-wave bifurcation into elliptically polarized sta- each case to the same poik=0). Then a determinant,

tionary solutions but it is preceded by the antisymmetric stadependent on the value chosen for the eigenvaluis con-

bility threshold given byu=v—1 and Eq.(19), at least in  structed consisting of the numerically determined values of

the Aly 15 Ga, gAs example. Generalizing, the antisymmetric (X, X/, Yy, Y. X, . X, .Y, ,Y,) for each of the eight “inde-

instability occurs in thefast mode (i.e., the mode with the pendent” solutions. Now if a value is chosen for the eigen-

lower propagation constantthe stationary solutions of value\ that corresponds to a bound solutigands to zero at

which bifurcate into elliptically polarized solutions. bothx= * ), then there will not be complete independence
The general stability case can be considered numericallipetween solutions generated for positive and negatisad

by making use of Evans’ approadi9,20. This is con- the determinant will be zero. Therefore, the eigenvalue prob-

structed in the following manner. First we consider thelem reduces to one of finding the zeros of the determinant as

asymptotic form of the eigenvalue equatidri) obtained by a function ofA. For determining the stability it is sufficient

ignoring the nonlinear contributions and settidg andV,  to locate\x on the real or imaginary axis in this case.

equal to zero. The two polarization components decouple, In the case of the “slow” optical modé.e., TM when

and decaying exponential solutions €xp+ 7x for x— * o, v>0 and TE wheny<0) it is found that for power levels

respectively are obtained and;/X;= * 1. This gives a total below the bifurcation point, all the eigenvalues for the singly

of eight “independent” asymptotic solutions. Each of thesepolarized soliton are real and therefore correspond to stable

asymptotic forms is used as the initial condition in an initial stationary states. At power levels above the bifurcation point
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FIG. 5. Calculated evolution of the Stokes parameters defined i(2EqThe transverse coordinatés shown over the range 400—400
(computational window-1000—1000) and the longitudinal coordinatever the range 0—£0 This example shows the stable symmetric

perturbation(2% amplitude launched in TE polarizatioof a TM-only polarized stationary soliton. Note that the vertical axesfands;
have been expanded by a factor of 10 in comparisosy to

a pair of eigenvalues become imaginary for the singly polar- VI. NUMERICAL STUDIES
ized soliton indicating instability to symmetric perturbations.

Simultaneously, mixed-polarization stationary soliton solu- A limitation of the linear stability analysis is that it pro-

. . o vides useful information only when the perturbations are
tions are allowedlinear polarizatiohthat are found to have . . L
only real eigenvalues and hence are stable. smal_l. In a regime where t_hg perturt_)e_mon has initially expo-
For the “fast” optical mode(i.e. TM wheny<0 and TE nential gromh, this analysis is msyfﬁment to follow the com-
when y>0) the behavior arom.Jn.d the bifurcation point is plete ?VOIUUO”' In TQ'UCh cases It IS necessary t(.) resort to
similar to the previous case. At power levels just below thelnumer!cal computation of the evPIqt|on of the optlcal enve-
bifurcation, only the singly polarized stationary solutions ex- ope given by the coupled PDE's in EGL). In Figs. 5-7
ist, which have only real eigenvalues are hence are stablg.]ree case studies are shown. In each case a.II fqur Stokes
Above the bifurcation point these develop a pair of imagi_parameter_s_a_lre p'°“e.‘?' to d_emonstrate the polarization evolu-
nary eigenvalues but simultaneously a mixed-polarizatiorjf'on The |n|t|a_l cond|t|o_ns in each case are taken to b_e the
stationary soliton(elliptically polarized comes into exis- |M-only polarized stationary soliton plus a TE-polarized
tence with only real eigenvalues. However, at lower opticalPerturbation with 2% of the amplitudee., 0.04% power
power levels there is the additional threshold corresponding N Fig. 5 the initial conditions are such that the soliton is
to an antisymmetric perturbation. For the singly polarizedstable to a symmetric perturbation. This is confirmed numeri-
stationary soliton it is found that imaginary eigenvalues ap<ally with the profiless,(x) ands;(x) undergoing oscilla-
pear at power levelbelowthis threshold. Hence at low op- tions limited by the initial amplitude a$3(x) (note the ver-
tical powers, the(singly polarized “fast” mode soliton is  tical scale has been expanded to illustrate)thasmd sy(x)
unstable to antisymmetric perturbations, becomes stable and s;(x) profiles are essentially constant during propaga-

higher power levels, and becomes unstable to symmetric petion. In Fig. 6 the initial optical power has been increased
beyond the bifurcation value. Now, the growths of the pro-

turbations at yet higher power levdlsifurcation poinj.
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FIG. 6. Same as Fig. 5 except that the initial conditions correspond to the growth of the symmetric perturbation.

files s,(x) ands;(x) are not bounded by the initial amplitude to Eqg. (1) are investigated. It is noted that in the single po-
of the perturbation. In additiogy(x) ands;(x) profiles also larization case, the coupled system reduces to the conven-
demonstrate a substantial modulation; in fact, in this exampléional nonlinear Schidinger equation supporting fundamen-
one extremum of the oscillation is approximately linearlytal sech envelope solitons. In addition there exist two
polarized at 45° to the optic axis. However it appears in thigamilies of mixed-polarization soliton corresponding to the
example that there is not any significant radiation over thfphase difference between the two components being zero
range investigated, with the “soliton” adjusting its width to (linearly polarized or /2 (elliptically polarized aligned with
compensate for the variation in nonlinearity with polarizationthe optic axis. The solutions to these are obtained numeri-
vector. In Fig. 7 an antisymmetric perturbation is employedcally by solution of a pair of coupled ODE’s. The only so-
with the initial conditions corresponding to this perturbation |ytions obtained here are symmetric and bell shaped for both
being unstable. In this example the propagation range is exomponents with the relative widths and power dependent on
tended by a factor of 3 to illustrate the dynamics. Again thethe total power. Hence, although the type of polarization
profiles s,(x) ands;(x) initially demonstrate growth but in  state is the same across the soliton, in the case of linear
this case there is an eventual breakup of the soliton. polarization, the orientation rotates, and in the case of ellip-
tical polarization, the degree of ellipticity varigas is com-
mon even for systems more symmetric than &g.[21]].

The polarization stability of the stationary soliton solu-
This paper starts from the coupled PDE'’s describingtions is investigated using a linear stability analysis, which
propagation of two orthogonally polarized modes approprideads to an eigenvalue problem. Exact analytic solutions are
ate for the standard orientation of a semiconductor waveknown for single-polarization solitons that allow analytic re-
guide. It is not widely appreciated that the crystal symmetrysults to be obtained at the instability threshold. The bifurca-
in this system, together with the inapplicability of Kleinmann tion points are found analytically from consideration of the
symmetry, leads to the form given in E.). In particular, boundary conditions of the associated Legendre function
there is an asymmetry between the two modes in the seligenfunction solutions. Numerical confirmation of the sta-
phase-modulation term. Here the stationary soliton solutionbility of the solutions on either side of this threshold is ob-

VII. CONCLUSIONS



PRE 58

0.0005
0.0004
0.0003 p
0.0002
: 2 XXX 5L
0.0001 g ) il s
. S 4
547 ,/////,,,/, ‘ '.‘:;.;'l://,,ll,,/ll/, 1

S2

},}4

&% 77 7 [ I/,,
20 ) 7 Zap 1T LR
S S s
e iy
74

U 111717,
4 27,00/ /// / /) 11
V07120 //,,’//,//I/ / Iy
0.0001 7 5 7
. |
200,727,005 0 203
% 4255555555
Z G553

i
/// 11 /'{’/Z!I / 7,
i i 1

LAY

i

7
S5
0 S
5%
L2

FIG. 7. Same as Fig. 5 except that the initial conditions correspond to the growth of the launched antisymmetric perturbation. The

STATIONARY MIXED-POLARIZATION SPATIAL . ..

6657

81

/,
/
/
S
/ Z Z
/ AT
s 2ol ) 7774407
. i
S 5% % 'o"":";":'/'i,,////
; 4, KRN
0.0004 ‘/ 4
s ey nte e e,
. A A KRR,
005052034,
A A IR RIS
0.0002 7% 025100, 0 0 ),
. 777 S KIRIA
7200 e ey e 4,0
0 \ #4254 7K ';'0'0‘0"/’//
2 s g et e Le e 0 0
22 717 a5 e e e ),
—0.0002 | K KNI K
. 255502 X5

%
%7
"'O": ///,,’,’,’/// &
IR TT AL
7174 LS LTRY,
//////,/,,////,,',’/l/,,';'lllgll/
Rt
121777217, %0157 17774
214, 7044
7

S3

Y77/
0 7
2 il e
5 ///////////;///////,ll":‘ol
1704

7 /
] 17l
A, v

V77 7 g
,”////,’//Z//ZZ;//////,’,’,////////////,/,///I/ //"'O‘O:O:ll
200 1 e b,

Z 7227, 100 07 0,08,
% A 5000555
’/Z/// 1775702175004,

//
(5%
ot
////// [T
I/l / /////;;I';;/ZIII
%2 // / 4
Z
. O % /””””/”Z’ Y %2
7, 12744402704
2% 555 A A A
L4 A L S MR,
_ 77 % Z% A Al kel
. 17,077 0, 7, /,,I,/II,/I;I/,,,II/,,,'Il,,
24 A G
<5 174/ /,,,;I/,,/I

2%

LA

2177001790004

2020504 190044
120775227,

e sy 707

AL

Zerr s

214y,

41
174,
I: 74

longitudinal coordinate has also been extended by a factor of 3 to show the eventual breakup of the soliton.

tained by an Evans function approach. As expected, th@idths in AlLGa,_,As waveguides at a wavelength around

single-polarization stationary soliton solutions are stable bei.55 um are of the order of 32um e~? diameter[5]. In

low the bifurcation points but become unstable to a symmetthe dimensionless units used here this corresponds to a width

ric perturbation above this point, which coincides with theof 860. The examples used in this paper are a factce Bf

emergence of stable mixed-polarization stationary solutionsaarrower, corresponding to a similar factor increase in opti-
However, during this analysis a new form of instability was cal power that is not unattainable. Similarly the largest value

discovered that affects the “fast” polarization modeor-

mally TM). There is a thresholfiven analytically at lower

used for the longitudinal coordinate ¥3L0°) corresponds to
a physical length of 1.1 cm which is typical for 8a _,As

power levels 'than the usual b[furcation. 'At power 'Ieve!swaveguide samples. The structural birefringence pf
lower than this threshold the single-polarization soliton is=An/(4n)=+10"* taken here is typical for slab

u_nstable to an antisymmet_ric perturbation. Numeric_al soluwaveguides. By specifically designing weak-waveguiding
tion of the coupled PDE's is also performed to confirm thestructures this could easily be reduced by around an order of
magnitude, although there are indications that stress-induced

results of the linear stability analysis.

Among other studies of multicomponent solitons is mul-pirefringence modifies the expected va[é. Since the rel-

tiwavelength solitons coupled by four-wave-mixifig2]. It

evant factor in the polarization stability thresholdafsy, the

is interesting to note some commonalities of behavior. At thesgjiton width at threshold is increased by a factor-d with
lowest optical power levels the single-component solitonsg similar reduction in optical power required.
are the only stable solution. As the power levels increase the

stable solutions are replaced with multicomponent solitons

(dual polarization in the present case, two- or three-

wavelength in the case of R¢22)).

It is important to establish whether the polarization phe-
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