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Stationary mixed-polarization spatial solitons and their stability in semiconductor waveguides
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Coupled nonlinear Schro¨dinger equations are used to describe propagation in the presence of an anisotropic
Kerr nonlinearity in the most common semiconductor waveguide configuration. Stationary soliton solutions are
identified analytically for the single-polarization case and numerically for the mixed-polarization case. The
stability of these stationary solutions is assessed by using a linear stability analysis. Analytic forms for the
bifurcation points are given, where the single-polarization state becomes unstable and the mixed-polarization
state emerges. A new form of polarization instability is also identified where the ‘‘fast’’ mode soliton becomes
unstable to antisymmetric perturbations at low power. Numerical studies are used to confirm the linear stability
analysis results.@S1063-651X~98!02411-8#

PACS number~s!: 42.65.Tg, 42.70.Nq, 42.65.Sf, 42.82.Et
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I. INTRODUCTION

There is currently a large research effort into the study
multicomponent solitons. The simplest variant of this is t
interaction of two orthogonal polarization components. T
system for mixed-polarization solitons studied most ext
sively, both experimentally and theoretically, is tempo
solitons in an optical fiber@1–4#. Semiconductor slab
waveguides~in particular, AlxGa12xAs at ;1.5 mm) have
proved to be a useful medium for studying spatial solito
and their dynamics@5,6#. Although in both of these system
the nonlinearity is of Kerr type, the assumptions of isotro
nonlinearity and of Kleinmann symmetry, commonly ma
in the case of silica, do not extend to semiconductors.

Studies of optical propagation in anisotropic cubic me
initially only considered propagation parallel to a crystal a
giving fourfold rotational symmetry@7,8#. This geometry
with the added assumption of Kleinmann symmetry has a
received some attention in relation to spatial solitons us
an average profile approach@9# and a linear stability analysi
@10#. The complete form of the coupled propagation eq
tions for an anisotropic cubic nonlinear refractive index h
been developed recently@11#. Plane-wave polarization dy
namics and initial finite-beam numerical studies have b
considered@12#. Qualitative agreement has been demo
strated with observed polarization dynamics in AlxGa12xAs
waveguides@6#. With the inclusion of diffraction, the equa
tions of motion are nonintegrable and in general mixe
polarization solutions can only be obtained numerically.
the present paper the stationary soliton solutions are stu
for the standard geometry of semiconductor waveguides
particular, the mixed-polarization stationary solutions are
tained numerically; linear stability analysis is performed a
lytically on single-polarization solitons and numerically
the general case.

II. COUPLED NONLINEAR SCHRO¨ DINGER EQUATIONS

The usual orientation for a semiconductor waveguide o
GaAs substrate is that the growth direction is parallel to
PRE 581063-651X/98/58~5!/6649~10!/$15.00
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crystal axis@001#. Since the cleavage planes are@110# and
equivalent, weakly guiding waveguides have the TE pol
ization parallel to @110# and TM polarization parallel to
@001#. In anisotropic cubic media the general propagat
equations are quite complex, with six nonlinear terms
each polarization component@11#. However, the higher de
gree of symmetry for this particular orientation results
some simplification of the propagation equations. The c
ventional approach of factoring out the single-moded en
lope in the vertical direction has been employed, leading

i
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]z
1

]2u

]x2
2gu1F S 12
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2 Duu* 1S 12d2
s
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2 Du* v250,
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1
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1gv1F S 12d2
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2 Duu* 1vv* Gv
1S d2

s

2 Du2v* 50,

whereu andv are the scaled electric field amplitudes for t
TE and TM components, respectively, such that the irra
ance isI u52n0uuu2/n2

L@001# and n2
L@001# is the nonlinear

refractive index for light linearly polarized parallel to a cry
tal axis~e.g., TM mode!. All quantities in Eqs.~1! have been
scaled to be dimensionless; the transverse and longitud
coordinates have been scaled to the optical wavelen
2kx→x and 2kz→z. The parameterg5(kTM2kTE)/4k is
proportional to the~structurally induced! birefringence. The
polarization dependence is introduced through the dim
sionless parameters:s is the nonlinear refractive anisotrop
parameter andd the nonlinear birefringence paramet
@13,14#. For an isotropic medium with Kleinmann symmet
these material parameters take the valuess50 andd51/3,
but in Al0.18Ga0.82As at the half-band-gap measurements
6649 © 1998 The American Physical Society
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dicates520.54 andd50.18 @15#. This large degree of an
isotropy for nonlinear refraction is also predicted from ban
structure calculations@13#. Note that the anisotropy leads t
an asymmetry in the self-phase-modulation terms for the
polarization components for this orientation and hence
substantially different from that studied in Refs.@9,10#
~which also have one fewer material parameter, as Kle
mann symmetry is assumed!.

III. REVIEW OF PLANE-WAVE POLARIZATION
DYNAMICS

The plane-wave polarization evolution described by E
~1! neglecting thex derivatives has received some attentio
An elegant method of solution is to consider the Hamilton
of the problem and then the polarization evolution trajec
ries correspond to contours of the constant Hamiltonian~also
keeping total power constant!. This can be formulated in
terms of field amplitudes@11# or in terms of the Stokes po
larization parameters@12#,

s05uuu21uvu2,

s15uuu22uvu2,
~2!

s25u* v1uv* ,

s352 i ~u* v2uv* !.

The Stokes parameters allow the trajectories to be illustra
on the Poincare´ sphere.

In order to understand the polarization dynamics, it
instructive to examine stationary solutions and their dyna
ics. In the presence of birefringence, at low optical pow
levels the plane-wave stationary solutions correspond to
ear polarizations parallel~TM! and perpendicular~TE! to the
optic axis ~@001#!. As the power~nonlinear phase shift! in-
creases, there is a threshold at which there is a bifurcatio
the singly polarized stationary solutions. For the ‘‘fas
mode~smaller propagation constant! this is into two ellipti-
cally polarized stationary solutions aligned with the op
axis. This bifurcation has previously been recognized fr
the study of temporal solitons in a birefringent optical fib
@2,7#. In anisotropic systems, however, there is an additio
bifurcation of the plane-wave stationary solution for t
‘‘slow’’ mode ~larger propagation constant! into two linearly
polarized states. An example of this is demonstrated in
polarization evolution trajectories on the Poincare´ sphere in
Fig. 1. These plane-wave bifurcation points can be speci
analytically@12#. Using the formalism of this paper they a
given by

s052g/~2d2s/2!, TE, g.0

s054g/s, TE, g,0
~3!

s0522g/s, TM, g.0

s052g/d, TM, g,0.
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IV. SOLITON STATIONARY SOLUTIONS

Among the stationary solutions to Eq.~1! are single-
polarization solitons. This can be seen by substitutingu50
~or alternativelyv50) in Eq. ~1! to obtain the usual scala
nonlinear Schro¨dinger equation~NLSE! in the TM ~or TE!
polarization component only. The lowest order soliton in th
case takes the usual form,

v5
A2

a
sechS x

a
D expF i S 1

a2
1g D zG . ~4!

For the specific case of zero birefringence (g50) there
are additional uniform polarization stationary solutions o
tained by reducing the coupled NLSE’s to a single equati
In the plane-wave case there are stationary polarization
lutions: ~1! linearly polarized parallel to@111#, given in
terms of the Stokes parameters ass15s0/3 ands350, and
~2! elliptically polarized states aligned with the optic ax
such thats15s0s/(8d2s) ands250. Assuming a solution
with a uniform polarization state corresponding to one
these plane-wave solutions again reduces Eq.~1! to the scalar
form and the nonlinear coefficient is scaled appropriate
For example, in the@111#-linear polarization case we tak
u5A2/3w andv5A1/3w and the scalar NLSE has the no
linear refractive coefficient for this polarization,n2

L@111#
5(122s/3)n2

L@001#.
In order to proceed with the general case of a nonz

birefringence (gÞ0) we first refer back to the plane-wav
case. The two classes of mixed-mode stationary solution
respond to~1! linear polarization~at some angle to the opti
axis!, which in terms of the Stokes parameters correspo
to the ‘‘equator’’ on the Poincare´ sphere,s350, or ~2! ellip-
tical polarization aligned with the optic axis corresponding
the ‘‘meridian’’ of the Poincare´ sphere,s250. In the former
case the componentsu andv are in phase, and in the latte

FIG. 1. Polarization evolution trajectories for a plane-wave
Al xGa12xAs with the usual orientation in terms of the Stokes p
rameters. The ratio of birefringence to nonlinearityDk/kNL is taken
to be 0.3 here, illustrating the bifurcation in the TM-only polariz
stationary solution.
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PRE 58 6651STATIONARY MIXED-POLARIZATION SPATIAL . . .
case exactly in quadrature. Therefore in the spatial sol
case we will consider the two classes of stationary solut
~1! linearly polarized, u(z,x)5U(x)exp(iVz), v(z,x)
5V(x)exp(iVz), which reduces Eq.~1! to the pair of ODE’s:

d2U

dx2
2~V1g!U1F S 12

s

2 DU21~12s!V2GU50,

~5!
d2V

dx2
2~V2g!V1@~12s!U21V2#V50;

~2! elliptically polarized u(z,x)5U(x)exp(iVz), v(z,x)
5iV(x)exp(iVz) giving the ODE’s

d2U

dx2
2~V1g!U1F S 12

s

2 DU21~122d!V2GU50,

~6!
d2V

dx2
2~V2g!V1@~122d!U21V2#V50.

U(x) andV(x) are real functions in both cases, andV is a
parameter that will ultimately be related to power.

The method of seeking solutionsU(x) and V(x) is as
follows. Bound solutions have the asymptotic form at lar
uxu found by ignoring the nonlinear terms in Eq.~5! or ~6!,
thus giving

U~x!;U0exp2~AV1g!uxu,
~7!

V~x!;V0exp2~AV2g!uxu.

These asymptotic forms and their derivatives are used
initial conditions for numerical integration of the full ODE’
towardsx50, using the Runge-Kutta method. Symmetry

FIG. 2. Plot showing the integrated Stokes parameters for
stationary soliton solutions~solid line! for the AlxGa12xAs example
takingg51024. The bifurcation of the TM-only polarized solutio
is demonstrated here. The long-dashed line indicates the uns
continuation of the TM-only polarized soliton stationary solutio
The short dashed lines indicate the maximum/minimum value
S2 , i.e.,S2 /S0561. The points~a!–~c! refer to the calculated pro
files in Fig. 3.
n
:

e

as

-

guments dictate thatU(x) and V(x) must be even or odd
functions; the fundamental soliton falls into the category
which both functions are even. Hence we look for zeros
both dU/dx and dV/dx at x50, by minimizing (dU/dx)2

1(dV/dx)2 as a function of the initial parameters (U0 ,V0).
In principle, this approach could be extended to search
even/odd or odd/odd solutions, but these higher-order s
tions could not be located numerically and it is known th
solutions of this form tend to be unstable@4#.

As an example, we shall look in more detail at the linea
polarized mixed-mode stationary soliton given by the so
tion of Eq.~5! with positiveg51024. To illustrate the locus
of solutions, we make use of the integrated Stokes par
eters,

e

ble

of

FIG. 3. Calculated amplitude profiles for the mixed-mode l
early polarized soliton stationary solutions.~a!–~c! correspond to
the points indicated in Fig. 2. The solid line is the TE-polariz
component and dashed line is the TM-polarized component.
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Sj5E
2`

`

sj~x! dx . ~8!

In particular, the total optical power is proportional toS0 . In
Fig. 2 the mixed-mode stationary solution is shown plot
asS2 againstS0 . In addition, the TM-only polarized station
ary soliton is shown as the lineS250. The short-dashed line
indicate that all solutions must lie in the regionuS2u<S0 . It
can be seen that the pair of mixed-mode stationary solut
only exists at optical powers above a certain threshold.
points indicated on the mixed-mode stationary solutions c
respond to the profiles shown in Fig. 3~a!–3~c!. Note that
both components are bell-shaped curves but of differ
widths, giving a polarization state that varies across the s
ton profile. As the total optical power varies, there is a co
siderable variation in the relative power in each mode an
the width of each component.

V. LINEARIZED FORM

One conventional method for analyzing the stability of t
stationary solutions is to examine the dynamics of a sm
perturbation from this solution @1#. Substituting in
Eq. ~1! u5@U0(x)1eU(z,x)#exp(iVz) and v5@V0(x)
1eV(z,x)#exp(iVz) whereU0 andV0 are known solutions to
Eq. ~5! and eU and eV are the small perturbations~so only
terms linear ineU,V need be retained! provides

i
]eU

]z
1

]2eU

]x2
2~V1g!eU1S 12

s

2 D ~2eU1eU* !U0
2

1F S 12d2
s

2 D ~eV1eV* !12S d2
s

2 D eVGU0V0

1F S 12d2
s

2 D eU1S d2
s

2 D eU* GV0
250,
d

ns
e
r-

nt
li-
-
in

ll

i
]eV

]z
1

]2eV

]x2
2~V2g!eV1F S 12d2

s

2 D eV

1S d2
s

2 D eV* GU0
21F S 12d2

s

2 D ~eU1eU* !

12S d2
s

2 D eUGU0V01~2eV1eV* !V0
250. ~9!

Writing the perturbationseU , eV as oscillatory functions,
e.g.,

e j5
1
2 @Xj~x!1Yj~x!#exp~ ilz!

1 1
2 @Xj~x!2Yj~x!#* exp~2 il* z! ~ for j 5U,V!,

~10!

whereXj andYj refer to the in-phase and in-quadrature co
ponents of the perturbationse j , collecting terms propor-
tional to exp(ilz) and exp(2il*z), and rearranging, we ob
tain

L1Y5lX,
~11!

L2X5lY,

where the vectorX5(Xv

Xu). The operatorsL1 andL2 are de-

fined by
urbation.
l

r the
L15S d2

dx2
2~V1g!1S 12

s

2 DU0
21~122d!V0

2 2S d2
s

2 DU0V0

2S d2
s

2 DU0V0

d2

dx2
2~V2g!1~122d!U0

21V0
2D ,

~12!

L25S d2

dx2
2~V1g!13S 12

s

2 DU0
21~12s!V0

2 2~12s!U0V0

2~12s!U0V0
d2

dx2
2~V2g!1~12s!U0

213V0
2D .

Since L1 and L2 are self-adjoint operators, Eqs.~11! indicate thatl2 is real, i.e., the eigenvaluel is either pure real,
corresponding to a stable perturbation, or pure imaginary, corresponding to an exponentially growing, unstable pert
We note that this two-dimensional eigenvalue equation has a similar form to Ref.@10# although the initial coupled differentia
equations are different.

The linear stability analysis of the elliptically polarized solitons is very similar. The same form is obtained fo
eigenvalue equation, Eq.~11!, but the operatorsL1 andL2 are slightly modified as
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L15S d2

dx2
2~V1g!1S 12

s

2 DU0
21~12s!V0

2 22S d2
s

2 DU0V0

22S d2
s

2 DU0V0

d2

dx2
2~V2g!1~12s!U0

21V0
2D ,

~13!

L25S d2

dx2
2~V1g!13S 12
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2 DU0
21~122d!V0

2 2~122d!U0V0
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d2
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Now consider the specific case of a single-polarizat
soliton for which the analytic solution is available in Eq.~4!.
The off-diagonal terms in the operatorsL1 andL2 are zero,
and therefore Eqs.~11! decouple into sets of equations sep
rately describing each polarization component of the per
bation. As an example, we consider the stationary solu
with only a TM-polarized componentU050; a similar
analysis applies for the TE-only case. The stability eig
value equations for the same polarization component ca
written as

F d2

dx2
2~V2g!1V0

2GYv5lXv ,

~14!

F d2

dx2
2~V2g!13V0

2GXv5lYv .

This form has been well studied for the scalar NLSE@16,17#.
Solutions to these include the casel50, which gives mar-
ginal stability. For a bounded solutionV0 , we getYv}V0 ,
which corresponds to a phase shift, andXv}dV0 /dx, which
corresponds to a position shift.

The stability eigenvalue equations for the opposite-~TE-!
polarization component in the TM-only stationary soluti
are

F d2

dx2
2~V1g!1~122d!V0

2GYu5lXu ,

~15!

F d2

dx2
2~V1g!1~12s!V0

2GXu5lYu .

Here we have used the linear-polarization stationary-solu
form for the operators given in Eqs.~12!, but the result for
the polarization stability of the single-polarization solito
follows also for the alternate form.

Note that in these opposite-polarization eigenvalue eq
tions ~unlike the same-polarization case! a number of nonlin-
ear refractive parameters such ass andd remain. Thus it is
anticipated that as the soliton power changes, the eigenva
of Eqs. ~15! will vary. We are particularly interested in th
threshold that marks the transition from a stable to an
stable perturbation. Sincel2 is always real, this must occu
n

-
r-
n

-
be

n

a-

es

-

at l50. On inserting this value into Eqs.~15! the two polar-
ization components decouple. Taking the stationary solu
for the TM-only component given by Eq.~4! and making the
substitutiont5tanh(x/a) then both of Eqs.~15! reduce to
the defining ODE for associated Legendre functions@18#.
The linearly independent solutions arePn

m(t) andQn
m(t) or,

alternatively, providingm is not an integer,Pn
6m(t), where

Pn
m~ t !5

1

G~12m!S 11t

12t D
m/2

3FS 2n,n11;12m;
12t

2 D ~16!

andF(a,b;c;z) is the hypergeometric function. The orderm
and degreen of the associated Legendre functions are giv
by

m25112a2g, n~n11!52~12s! for Xu , ~17!

m25112a2g, n~n11!52~122d! for Yu . ~18!

There are two rootsn1,2 in each case for the ordern, which
are related byn21152n1 . The TE-only case can be sim
larly analyzed and also produces associated Legendre f
tions for the eigenfunctions withl50 but with the order and
degree given by

m25122a2g, n~n11!52
~12s!

S 12
s

2 D for Xv , ~19!

m25122a2g, n~n11!52
~122d!

S 12
s

2 D for Yv . ~20!

Here we are interested in eigenfunctions that are bound
requiringX(t), Y(t)→0 ast→61. At these limits the hy-
pergeometric function takes the forms@18#

F~a,b;c;1!5
G~c!G~c2a2b!

G~c2a!G~c2b!
,

~21!
F~a,b;c;0!51.
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Taking the positive square root~i.e., m.0), it can be seen
from Eqs.~16! and~21! thatPn

m(t) is singular att51. There-
fore the eigenfunctions are restricted to the nega
root X(t), Y(t)5CPn

2m(t). Furthermore, to satisfy
limt→21Pn

2m(t)50, the hypergeometric function must va
ish as t→21, corresponding to a pole of one or oth
gamma function in the denominator of Eq.~21!, G(m2n) or
G(11m1n). Therefore it is necessary that (m2n) is zero
or a negative integer for one of the possible values for
ordern. Typical values of the material parameters~e.g., half-
band-gap nonlinearity in direct-gap semiconductors! are
22,s<0 and 0<d<1/3. These impose restrictions on th
positive root for the degreen: ~1! for Eqs.~17! and ~19!, 1
<n,2, and ~2! for Eqs. ~18! and ~20!, 0,n<1. Hence,
overall only the casesm5n and m5n21 need be consid
ered here. These two cases correspond to a symmetric
antisymmetric eigenfunction, respectively.

Consider first the TM-only polarized stationary solutio
with the order and degree of the eigenfunction given by E
~17! and ~18!. If the structural birefringence parameterg is
positive~indicatingnTM.nTE), thenm.1 and the only sta-
bility threshold that applies ism5n ~symmetric eigenfunc-
tion! using Eq.~17!. The optical power in the soliton is pro
portional to a21, therefore with increasing power th
parameterm decreases towards unity according to Eq.~17!.
The thresholdm5n here is the soliton equivalent of th
plane-wave bifurcation point@11,12#, where the TM-only
wave becomes unstable with the stationary solution bifur
ing into two linearly polarized stationary solutions. Forg
,0, Eq. ~18! providesm,1, increasing with optical power
There is also a soliton stability threshold that correspond
the previously investigated plane-wave bifurcation po
~into elliptically polarized stationary solutions! given by m
5n ~symmetric! and Eq.~18!. However, taking the measure
values for Al0.18Ga0.82As @15#, s520.54 andd50.18, the
stability threshold conditionm5n21 ~antisymmetric pertur-
bation! with Eq. ~17! is reached at lower optical power lev
els. Figure 4 shows the calculated eigenfunctions at th
three stability thresholds.

Consideration of the TE-only case gives similar resu
The plane-wave bifurcation into linearly polarized stationa
solutions for g,0 has its counterpart in the soliton ca
given bym5n and Eq.~19!. Forg.0 there is the equivalen
of the plane-wave bifurcation into elliptically polarized st
tionary solutions but it is preceded by the antisymmetric s
bility threshold given bym5n21 and Eq.~19!, at least in
the Al0.18Ga0.82As example. Generalizing, the antisymmet
instability occurs in thefast mode ~i.e., the mode with the
lower propagation constant!, the stationary solutions o
which bifurcate into elliptically polarized solutions.

The general stability case can be considered numeric
by making use of Evans’ approach@19,20#. This is con-
structed in the following manner. First we consider t
asymptotic form of the eigenvalue equation~11! obtained by
ignoring the nonlinear contributions and settingU0 and V0
equal to zero. The two polarization components decou
and decaying exponential solutions (}exp7hx for x→6`,
respectively! are obtained andYi /Xi561. This gives a total
of eight ‘‘independent’’ asymptotic solutions. Each of the
asymptotic forms is used as the initial condition in an init
e

e

nd

s.

t-

to
t

se

.

-

lly

e,

l

value problem~set of coupled linear ODE’s!, integrating in
each case to the same point (x50). Then a determinant
dependent on the value chosen for the eigenvaluel, is con-
structed consisting of the numerically determined values
(Xu ,Xu8 ,Yu ,Yu8 ,Xv ,Xv8 ,Yv ,Yv8) for each of the eight ‘‘inde-
pendent’’ solutions. Now if a value is chosen for the eige
valuel that corresponds to a bound solution~tends to zero at
bothx56`), then there will not be complete independen
between solutions generated for positive and negativex and
the determinant will be zero. Therefore, the eigenvalue pr
lem reduces to one of finding the zeros of the determinan
a function ofl. For determining the stability it is sufficien
to locatel on the real or imaginary axis in this case.

In the case of the ‘‘slow’’ optical mode~i.e., TM when
g.0 and TE wheng,0) it is found that for power levels
below the bifurcation point, all the eigenvalues for the sing
polarized soliton are real and therefore correspond to st
stationary states. At power levels above the bifurcation po

FIG. 4. The TE-polarized perturbation eigenfunctions at
threshold of instability for a TM-only polarized soliton calculate
using the measured nonlinear refractive parameters
Al0.18Ga0.82As at the half-band-gap. For comparison the sech en
lope of the TM-polarized soliton is also shown~dashed!. Transverse
dimensions are given in terms of the soliton widtha. ~a! occurs for
nTM.nTE , ~b! is the symmetric and~c! the antisymmetric eigen-
functions, respectively, fornTM,nTE .
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FIG. 5. Calculated evolution of the Stokes parameters defined in Eq.~2!. The transverse coordinatex is shown over the range2400–400
~computational window21000–1000) and the longitudinal coordinatez over the range 0 –105. This example shows the stable symmet
perturbation~2% amplitude launched in TE polarization! of a TM-only polarized stationary soliton. Note that the vertical axes fors2 ands3

have been expanded by a factor of 10 in comparison tos1 .
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a pair of eigenvalues become imaginary for the singly po
ized soliton indicating instability to symmetric perturbation
Simultaneously, mixed-polarization stationary soliton so
tions are allowed~linear polarization! that are found to have
only real eigenvalues and hence are stable.

For the ‘‘fast’’ optical mode~i.e. TM wheng,0 and TE
when g.0) the behavior around the bifurcation point
similar to the previous case. At power levels just below
bifurcation, only the singly polarized stationary solutions e
ist, which have only real eigenvalues are hence are sta
Above the bifurcation point these develop a pair of ima
nary eigenvalues but simultaneously a mixed-polarizat
stationary soliton~elliptically polarized! comes into exis-
tence with only real eigenvalues. However, at lower opti
power levels there is the additional threshold correspond
to an antisymmetric perturbation. For the singly polariz
stationary soliton it is found that imaginary eigenvalues
pear at power levelsbelow this threshold. Hence at low op
tical powers, the~singly polarized! ‘‘fast’’ mode soliton is
unstable to antisymmetric perturbations, becomes stabl
higher power levels, and becomes unstable to symmetric
turbations at yet higher power levels~bifurcation point!.
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VI. NUMERICAL STUDIES

A limitation of the linear stability analysis is that it pro
vides useful information only when the perturbations a
small. In a regime where the perturbation has initially exp
nential growth, this analysis is insufficient to follow the com
plete evolution. In such cases it is necessary to resor
numerical computation of the evolution of the optical env
lope given by the coupled PDE’s in Eq.~1!. In Figs. 5–7
three case studies are shown. In each case all four St
parameters are plotted to demonstrate the polarization ev
tion. The initial conditions in each case are taken to be
TM-only polarized stationary soliton plus a TE-polarize
perturbation with 2% of the amplitude~i.e., 0.04% power!.

In Fig. 5 the initial conditions are such that the soliton
stable to a symmetric perturbation. This is confirmed num
cally with the profiless2(x) and s3(x) undergoing oscilla-
tions limited by the initial amplitude ofs3(x) ~note the ver-
tical scale has been expanded to illustrate this!, and s0(x)
and s1(x) profiles are essentially constant during propag
tion. In Fig. 6 the initial optical power has been increas
beyond the bifurcation value. Now, the growths of the p
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FIG. 6. Same as Fig. 5 except that the initial conditions correspond to the growth of the symmetric perturbation.
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files s2(x) ands3(x) are not bounded by the initial amplitud
of the perturbation. In additions0(x) ands1(x) profiles also
demonstrate a substantial modulation; in fact, in this exam
one extremum of the oscillation is approximately linea
polarized at 45° to the optic axis. However it appears in t
example that there is not any significant radiation over
range investigated, with the ‘‘soliton’’ adjusting its width t
compensate for the variation in nonlinearity with polarizati
vector. In Fig. 7 an antisymmetric perturbation is employ
with the initial conditions corresponding to this perturbati
being unstable. In this example the propagation range is
tended by a factor of 3 to illustrate the dynamics. Again
profiless2(x) ands3(x) initially demonstrate growth but in
this case there is an eventual breakup of the soliton.

VII. CONCLUSIONS

This paper starts from the coupled PDE’s describ
propagation of two orthogonally polarized modes approp
ate for the standard orientation of a semiconductor wa
guide. It is not widely appreciated that the crystal symme
in this system, together with the inapplicability of Kleinman
symmetry, leads to the form given in Eq.~1!. In particular,
there is an asymmetry between the two modes in the s
phase-modulation term. Here the stationary soliton soluti
le

s
e

d

x-
e

g
i-
-

y

lf-
s

to Eq. ~1! are investigated. It is noted that in the single p
larization case, the coupled system reduces to the con
tional nonlinear Schro¨dinger equation supporting fundame
tal sech envelope solitons. In addition there exist t
families of mixed-polarization soliton corresponding to t
phase difference between the two components being
~linearly polarized! or p/2 ~elliptically polarized aligned with
the optic axis!. The solutions to these are obtained nume
cally by solution of a pair of coupled ODE’s. The only so
lutions obtained here are symmetric and bell shaped for b
components with the relative widths and power dependen
the total power. Hence, although the type of polarizat
state is the same across the soliton, in the case of lin
polarization, the orientation rotates, and in the case of el
tical polarization, the degree of ellipticity varies@as is com-
mon even for systems more symmetric than Eq.~1! @21##.

The polarization stability of the stationary soliton sol
tions is investigated using a linear stability analysis, wh
leads to an eigenvalue problem. Exact analytic solutions
known for single-polarization solitons that allow analytic r
sults to be obtained at the instability threshold. The bifur
tion points are found analytically from consideration of t
boundary conditions of the associated Legendre func
eigenfunction solutions. Numerical confirmation of the s
bility of the solutions on either side of this threshold is o
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FIG. 7. Same as Fig. 5 except that the initial conditions correspond to the growth of the launched antisymmetric perturbat
longitudinal coordinate has also been extended by a factor of 3 to show the eventual breakup of the soliton.
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tained by an Evans function approach. As expected,
single-polarization stationary soliton solutions are stable
low the bifurcation points but become unstable to a symm
ric perturbation above this point, which coincides with t
emergence of stable mixed-polarization stationary solutio
However, during this analysis a new form of instability w
discovered that affects the ‘‘fast’’ polarization mode~nor-
mally TM!. There is a threshold~given analytically! at lower
power levels than the usual bifurcation. At power leve
lower than this threshold the single-polarization soliton
unstable to an antisymmetric perturbation. Numerical so
tion of the coupled PDE’s is also performed to confirm t
results of the linear stability analysis.

Among other studies of multicomponent solitons is m
tiwavelength solitons coupled by four-wave-mixing@22#. It
is interesting to note some commonalities of behavior. At
lowest optical power levels the single-component solito
are the only stable solution. As the power levels increase
stable solutions are replaced with multicomponent solit
~dual polarization in the present case, two- or thre
wavelength in the case of Ref.@22#!.

It is important to establish whether the polarization ph
nomena described in this paper are realizable with cur
experimental samples and apparatus. Typical spatial so
e
-

t-

s.

-

-

e
s
e
s
-

-
nt
on

widths in AlxGa12xAs waveguides at a wavelength aroun
1.55 mm are of the order of 32mm e22 diameter@5#. In
the dimensionless units used here this corresponds to a w
of 860. The examples used in this paper are a factor of>2
narrower, corresponding to a similar factor increase in o
cal power that is not unattainable. Similarly the largest va
used for the longitudinal coordinate (33105) corresponds to
a physical length of 1.1 cm which is typical for AlxGa12xAs
waveguide samples. The structural birefringence ofg
5Dn/(4n)561024 taken here is typical for slab
waveguides. By specifically designing weak-waveguidi
structures this could easily be reduced by around an orde
magnitude, although there are indications that stress-indu
birefringence modifies the expected value@6#. Since the rel-
evant factor in the polarization stability threshold isa2g, the
soliton width at threshold is increased by a factor of;2 with
a similar reduction in optical power required.
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